Respuesta :
we can find the number of moles of gas using the ideal gas law equation
                                                Â
PV = nRT
                                                Â
where P - pressure - 1.22 atm
                       Â
V - volume - 0.245 L
                                               Â
n - number of moles
                                               Â
R - gas constant - 0.08206 L.atm/mol.K
                       Â
T - temperature - 298 K
                                               Â
substituting the values in the equation
                         Â
1.22 atm x 0.245 L = n x 0.08206 L.atm/mol.K x 298 K
                       Â
n = 0.0122 mol
                                               Â
molar mass of compound = mass present / number of moles therefore molar mass = 0.465 g / 0.0122 mol = 38.1 g/mol
the answer is d) 38.0 g/mol
                                                Â
PV = nRT
                                                Â
where P - pressure - 1.22 atm
                       Â
V - volume - 0.245 L
                                               Â
n - number of moles
                                               Â
R - gas constant - 0.08206 L.atm/mol.K
                       Â
T - temperature - 298 K
                                               Â
substituting the values in the equation
                         Â
1.22 atm x 0.245 L = n x 0.08206 L.atm/mol.K x 298 K
                       Â
n = 0.0122 mol
                                               Â
molar mass of compound = mass present / number of moles therefore molar mass = 0.465 g / 0.0122 mol = 38.1 g/mol
the answer is d) 38.0 g/mol
Answer: Option (d) is the correct answer.
Explanation:
It is know that for an ideal gas PV = nRT
where   P = pressure
        V = volume
        n = number of moles = [tex]\frac{mass}{molar mass}[/tex]
        R = gas constant = 0.082 [tex]L atm K^{-1} mol^{-1}[/tex]
        T = temperature
Therefore, put the given values in the formula above as follows.
          PV = nRT
or, Â Â Â Â Â Â Â PV = [tex]\frac{mass}{molar mass}RT[/tex]
        [tex]1.22 atm \times 0.245 L = \frac{0.465 g}{molar mass} \times 0.082 L atm K^{-1} mol^{-1} \times 298 K[/tex]
        molar mass = 38.12 g/mol
                  = 38.0 g/mol (approx)
Therefore, we can conclude that the molar mass of the unknown compound is 38.0 g/mol.