Respuesta :
1. Take a look at the pictures attached.
2.
i) the first line divides the plane into 2 regions
ii) the second line adds 2 more regions so we have 4 in total.
iii) the third line adds 3 more regions, so 4+3=7 regions
iv) the fourth line adds 4 more regions.
so the [tex] n^{th} [/tex] line adds n more regions to the ones created by the previous n-1 lines.
3.
[tex]r_1=2[/tex]
[tex]r_2=2+2=4[/tex]
[tex]r_3=4+3=7[/tex]
[tex]r_4=7+4=11[/tex]
[tex]r_n=r_n_-_1+n[/tex]
So the recurrence relation is
[tex]r_1=2[/tex]
[tex]r_n=r_n_-_1+n[/tex]
2.
i) the first line divides the plane into 2 regions
ii) the second line adds 2 more regions so we have 4 in total.
iii) the third line adds 3 more regions, so 4+3=7 regions
iv) the fourth line adds 4 more regions.
so the [tex] n^{th} [/tex] line adds n more regions to the ones created by the previous n-1 lines.
3.
[tex]r_1=2[/tex]
[tex]r_2=2+2=4[/tex]
[tex]r_3=4+3=7[/tex]
[tex]r_4=7+4=11[/tex]
[tex]r_n=r_n_-_1+n[/tex]
So the recurrence relation is
[tex]r_1=2[/tex]
[tex]r_n=r_n_-_1+n[/tex]



